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SUMMARY 

In general Stokes problems, no boundary conditions exist for the pressure. But pressure is an LZ@) 
function and can uniquely be represented as the divergence of a precisely defined vector field. In the 2-D 
case, this vector field can in turn be represented as the sum of a gradient (of a pressure-potential) and the 
curl of a second scalar potential. The latter potential is entirely determined by the first one. A variational 
equation is obtained for such pressure potential class, which exists and is uniquely characterized. This 
variational problem is well-posed. Finite element approximations can easily be realized and ensure high 
convergence rates for the ,!.'(a) norm of the pressure. 
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1. INTRODUCTION 

The determination of the pressure in a Stokes problem has long since been known to be a 
difficult problem. Major progress towards the characterization of the pressure was realized by 
Girault and Raviart,' by presenting a simultaneous characterization for the velocity and pressure, 
via the mixed variational principle. Recently, some papers have been devoted to the question of 
separate determination of the pressure.233 These results are, however, restricted to the particular 
case fEH(div;R) .  We obtain in this paper a general approach, which solves the question of 
pressure characterization. The starting point of our method is a weak formulation of the operator 
equation. A thorough understanding of the underlying mechanism, together with representation 
theorems for scalar functions in L:(R)= {qEL2(R)Ifnqdx = 0} (a handy substitute for 
L2(R)/R), enables us to solve this problem of the separate or sequential characterization of the 
pressure in Stokes problems (section 2). More particularly, in the 2-dimensional case we go 
deeper into the heart of this problem by formulating characterizations for potentials that uniquely 
represent the pressure. These results are stated in variational form, and the well-posedness is 
proved (section 4). Finally we show that our method is well suited for constructive purposes and 
adapts easily to the finite element approximation (section 5). 

The Stokes problem is concerned with the stationary pow, of an incompressible viscous fluid, in 
some domain R of R". This motion, described both by a velocity field u and a pressure function P, 
results from the action of a force f (representing a density of volumic forces) in the presence of a 
prescribed velocity pattern g on the whole of the boundary of R (denoted r). We consider thus a 
domain R, which will be an open bounded multiply-connected subset of R", whose boundary 
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N 
r = u Ti, 

i = O  

is Lipschitz-continuous (Reference 4, pp. 14-1 5), and composed of N + 1 connected components Ti, 
where we consider To to be the outer boundary of the domain R. As is well known, for every 
fE[H-' (R)]" and every gE[H+ ''2(r)]" satisfying 

jr g - v  dy = 0,  

there exists a unique pair (u,P)E[H'(R)]" x Li(R): 

- q Au + grad P = f ,  in R, 
divu = 0, in R, 

u =  g ,  on r, 
v]  being the dynamic viscosity and v the outer normal. 

2. BASIC CHARACTERIZATIONS OF THE PRESSURE (R") 

From the operator formulation of the Stokes problem, we deduce by using the duality form 
( . ,*)FH;(n),n,  that for all WE[HA(R)]", we have 

(f,w)[H;cn)p= (gradP,w)[Hbcn)p + a(u,w), (2) 

where for v,  WE[H'(R)]" we denote: 

a(v, W) v [(gradv, gradw),,, + 1 (aivj, ajwi)o,nI * 
i j  

As is well known (Reference 1, p. 53), the velocity field UE[H'(R)]": div u = 0 in R, u = g on r can be 
characterized independently from the pressure and satisfies: 

a(u, V )  = (f, v )  [H;(n)p v V E  V, (3) 
where V = ( V E [ H A ( R ) ] " ~  divv = 0 in a}. Moreover, since the Hilbert space ([HA(R)]" ,  1 .  I l , n )  
admits adirect sum decomposition: [HA(R)]" = V @  Vt, where Vt is the orthogonal complement of 
V in ([Hh(Q)]",  I * we obtain the following basic result. 

Theorem 1. The pressure P, defined in the Stokes problem ( I ) ,  is uniquely characterized by the 
problem: 

where 

Proof: We introduce first the operator B*EL(L;(R), [H-'(R)]"), adjoint operator of 
BEL([H,$~)]", [Li(R)]*) defined as 

- (4 ,  div v)o,n = (B*q,  v )[H;(n)]" = ( Bv, 4 >La(.), 

and the operator AEL([HA(R)]", [H-'(R)]") associated to the bilinear form a( *,  * )  as a(v, w) = 
( A v ,  We deduce from (2) that P = [B*]-'(f - Au). Now B* is an isomorphism 
from Li(R) onto V" (Reference 1, p.41), where 
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V 0  = {wE[H- ' (n ) ]" l  ( w ,  U)rH~cn,," = 0, v VE V } ,  

is the polar set of V. By the characterization of the velocity field u we have that (3) holds and 
thus (f - Au)EVO. We obtain the desired result. rn 

A second characterization can further be obtained by taking into account (Reference 1, p. 33) 
that the mapping diu: Vt + Li(i2) is an isomorphism, element of L((  Vt, I ',*), 
(L i (R) ,  11 . Ilo,n)). The following property plays a role in the proof of the second characterization. 

Proposition 1. On the linear space Vt, lldiu- I I O , R  is a norm equivalent to I .  I I , R  and II . II l . R .  

Proof. Since diu is an isomorphism on V', we have for every v € V t  that 

which proves the assertion. rn 
We are now ready to formulate the second characterization for the pressure solution of a 

Stokes problem. 

Theorem 2. The pressure P ,  defined in the Stokes problem ( I ) ,  is given as P = diu z where the vector 
field z is uniquely characterized by the problem: 

? zEVt:(diuz,  diu w)o,n = (L, w ) ,  V W E  Vt. (6) 
with (L, . ) defined by (5) .  

Proofi The existence and unicity of the vector z solution of (6)  follows from the Lax-Milgram 
theorem on (Vt, I . I l,n). Indeed (diu., diu.)o,n is a bilinear continuous mapping on Vt, as this follows 
from proposition 1 and the Schwarz inequality. The ellipticity of this bilinear form on 
(Vt, Ildiu. Ilo,n) is a consequence of its definition, and in virtue of proposition 1 is also verified on 
(Vt, 1 .  I Finally that (L,.)  is a linear continuous function follows from the definition off as an 
element of [H- ' (R)]" .  The partial mapping a(u, . )  is in turn also linear and continuous on 

rn (Vt, 1 .  1 1 , * )  since it is linear and continuous on ( [Hh(R) ]" ,  1 .  I l , n )  (Reference 1, p. 52). 

Theoretically speaking, theorems 1 and 2 characterize completely the pressure function P and 
the velocity field z ~ V ~ : P = d i u z .  However, the main drawback of (4) and (6)  is the space 
V" which offers fewer possibilities to be realized, e.g. by using finite element approximations. 
In the sequel, the main results originate from the representation of vector fields by potentials 
and stream functions, and therefore we restrict attention to the 2-D case. Obviously, it should 
be possible to obtain similar results in the 3-D case, but this requires more elaborate developments 
concerning the potentials involved. From now on, the domain R will be an open bounded multiply 
connected subset of R2, whose boundary is Lipschitz-continuous. In addition, and to ensure the 
existence of regular potentials and stream functions, as required in future developments, we 
suppose to be a C2-manifold of dimension 1 .  

3. REPRESENTATION O F  VECTOR FIELDS IN Vt (n = 2) 

In the sequel, we are particularly interested in the representation of vector fields v, belonging to 

(7) Vt = { v ~ [ H ~ ( i 2 ) ] ~  [(grad v, grad w ) ~ , ~  = 0, V W E  V } .  
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We deduce first an equivalent characterization. 

Proposition 2. T h e  linear space Vt defined in (7)  can equiualently be stated as 

vt = { v ~ [ ~ ~ ( R ) ] ~ ~ ( c u r l v , c u r l w ) ~ , ,  = 0, V W E V } .  

Proof. For any VE[H' (R)] '  and for any W E [ H A ( R ) ] ~  we have that 

(grad v, grad w ) ~ , ~  = (curl v, curl w ) ~ , ~  + (diu v,  diu w ) ~ , ~ .  

At this stage, what is important to note about the function curlv for some v € V t ,  is that 
cur l veL i (R)  and Acurlv = 0 in R. 

Taking now into account proposition 2, we immediately deduce a first representation theorem 
for elements in Vt. 

Theorem 3. For every V E V ' ,  there exists a unique potential class @EH'(R)/R and a uniquely 
defined stream function class $eH'(R)/R such that: 

v = grad cp + curl $ in [H#2)]' and yy(grad cp) = 0 in H +  '"(r). 
The  equiualence classes 4 c H2(R) and the functional relation M such that $ = M(@)  c H2(R) are 
defined as follows: 

1. @€H'(R)/R: 

(grad cp? grad X1o.n = - (diu v, X)o.n, v X E H ' ( Q ) ,  

2. M :  @EH'(R)/R+$EH'(R)/R, such that $E$ satisfies: 

$ E H ~ ( R ) : c ~ ~ $  = 0 on r, = y,(grad cp) on r, 
(A*, AX)o.n = 0, v X E Y ,  

where Y = Hi(R)@span  {$, l i  = 1,. . . , N } ,  with t,hi; i = 1,. . . , N  defined by 

$,eH2(R):$, = dij on T j : j  = 0,. . ., N ,  a,$, = 0 on r, 
(A$i,AX)o,n=O, V X E H ~ ( Q ) .  (8) 

Proof. Let v be a fixed, but arbitrary element in Vt c [H;(R)] ' .  Let us then consider the 
following Neumann problem: 

? @EH'(R)/R: - Acp = - diuv in R, 8,cp = 0 on r. 
Such a @ always exists, is uniquely defined by this problem and moreover any c p ~ @  is also 
in H2(R). To verify the last assertion, we note that since V E [ H ~ ( R ) ] ~ ,  we have that d i u v e L i ( R )  
and take into account that by hypothesis on R, r is a C2-manifold of dimension 1 (Reference 5, 
p. 68-73). At this stage, what is important to verify is that by this construction, the vector 
w = v -grad cp is an element of the space [H'(R)]' nHo(div; R). Such a vector field w can uniquely 
by represented by a stream function class $ such that: w = curl $ in [H' (R)] ' .  To this end, we 
first build some function $* satisfying: $*EH'(R), a,$* = - y,w in H+'i2(T)  and a,$* = O  
in H i  lI2(r). There always exist some H E H  + 3/2(r) such that DH = 0 (i.e. piecewise constants). 
Taking now into account Reference 1, p. 5, Th. 1.5, there always exists some $* in H2(R) that 
satisfies yo$*  = H and y1 $* = - y,w. Next we consider the vector field wo = w - curl$*. 
What is important to observe now is that wo is in V. According to Reference 6,  $ 6 ,  
there exists a unique stream function $ O E Y ' ,  such that wo =curl$' is in V while $'EY is 
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characterized by the following variational equation: 

(A$', AX)o,* = - (curlwo, AX)',*, v X E Y .  (9) 
From (9) we deduce that (curl (wo - curl $'), curl v)o,a = 0 for all V E  I/ and we obtain that 
Iwo -curl$'I,,,=O. Since on HA(R) the norms l . I l , *  and 1 1 .  I l l , *  are equivalent, we 
finally deduce that I(v - grad cp - curl($' + $*) 11 = 0. We can thus conclude that the 

rn 
It is important to stress here that in the representation of v as v = gradcp + curl $, cp depends 

only on divv while $ is a function of cp only and does not require any information on curlv, 
even though only A curl v = 0 is in S2. 

identification v = grad cp + curl($' + I)*) holds in [H1(!2)lZ. 

Let us introduce the following subset of H'(R)/R: 

0, = { ~ E H ~ ( R ) / R ~ ~  c H ~ ( S Z ) ,  avcp = o on r:cpE$}. (10) 
This set of equivalence classes is easily verified to be a linear subspace of the quotient 
space H' (R)/R. 

Proposition 3. The linear space 0,, defined in ( lo) ,  is a closed subspace of H'(R)/R. The application: 

is a norm on 0,. 

Proof: 1. Consider a sequence (&) of elements in the space O,, which converges to the class 
~EH'(R)/R, where 4 c H 2 ( R ) .  Since for every (P,'E@,', we have that y 1 q L  converges to 
ylcp in H + l / ' ( r )  for any ~ € 4 ,  it contains a subsequence, which converges almost everywhere 
to y,cp and thus y , c p = O  on r, i.e. d,cp = O  on r. This implies that 4 belongs to 6,. 
2. That IIAcpllo,n is a norm over the space 6 ,  can be verified as follows. Consider an element 
4 ~ 6 ,  for which n(+)=O. This means that IIAcpllo,n=O and thus Acp=O in R, for any 
~ € 4 .  Consequently 4 is a solution of the Neumann problem: Acp=O in R and dvcp=O 

rn on r. Obviously cp~4 is a constant in R and thus 4 = 0 in H'(n)/R. 
We further consider the following set in H'(R)/R: 

a,cpdy=O:i=O,l, ..., N ,  ( ~ € 4  

It is important for our analysis to mention the following constructive property for the equivalence 
classes, elements of this set 0,. 

Proposition 4. For every O E ~ , ,  there exist uniquely defined constants ( d , ,  . . . , dN)ERN such 
that for ~ € 4 ,  we have that: 

yocp = c on To, yocp = c + did i j  on T j ,  j = 1,. . ., N ,  

for some CER. 

Proof: Let us consider some 4 in 0,. Since for any ( ~ € 4  we have arcp = O  on r and 
thus yocp is constant on every connected component T j  of the boundary (Reference 7, p. 153 a.f.). 
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It is easily verified that every c p ~ @  can be represented as: 
N 

where (i) CER,  (ii) cpo~H~(R) : -Acpo=  -Acp in R, and (iii) for every iE{l,  ..., N}:cpi€ 
H'(R): - Acpi = 0 in R, cpi = dij on rj:j = 0,1,. . . , N .  Since ( P E @ E ~ ,  we always have: fri 8,cp dy = 0, 
i = 0,1,. . . , N .  Hence ( d , ,  . . . , d,)ER", defined in (12), is a solution of the linear system: 

Note that the remaining equation on To is then automatically verified, since cp satisfies 
Sraycpdy = 0 and thus Acpd;(R). The linear system (13) always possesses a unique solution, 
since the columns of the matrix, associated to the linear operator, are necessarily linearly 

The set of equivalence classes, defined in (1 l), is easily verified to be a linear subspace of 
H'(R)/R. Moreover the mapping n defined in proposition 3 is also a norm on 6,. To verify 
this, we consider an element @ E @ ~ ,  for which I(Acp(lo,n=O for ~ € 4 .  Consequently A q = O  
in R for any c p ~ @ .  Applying now proposition 4, we have that cp = c + cpo + dicpi, and 
we readily deduce that cpo = 0 in R. Consequently the solution (d,, . . . , d,)ERN of (13) necessarily 
vanishes, i.e. d, = ... = d, = 0 and thus @ = 0 in 6,. 

Concerning the mapping M defined in theorem 3, we easily verify that M ( @ , )  = 0,. We 
prove the following proposition: 

independent, and thus the rank of the associated matrix is N .  

Proposition 5. The linear mapping M : ( 6 , ,  n) +(G2, n) is continuous. 

Proof: We verify that $ = M ( @ ) E ~ , .  Indeed since @ c H2(R) we have that for every 
i = 0,1,. . . , N ,  0 = Jri 8,cp dy = fri aV$ dy. Moreover by Green's formula, we have that Jn A$ dx = 
fra,cpdy = 0 and hence A$EL;(R). To verify that M is a continuous mapping from 0, into 6,, 
we consider $EM(@). We have for ~ € 4 ,  

I@$ ll0,R = IIcurhPd cp + curl $1 Il0,n G cp + curl $ I1.R. 
Taking into account that div is an isomorphism, we end up with 

lgradcp +CU~~$Il ,RG Ildi~-'Ilo,n.II~cpIIo,n. 

In the sequel we will use the following notation related to the correspondence between Vt 
and @,, namely [grad+curloM]:@iE6,+Vt. We will thus state for any v € V t  
that we have v = [grad + curloM](@) for some @eG1, which replaces the construction of 
theorem 3. To conclude this section, we summarize main properties of this correspondence, by 
describing the basic isomorphisms. By choosing appropriate norms, the linear correspondence 
can be shown to be continuous and so does its inverse. 

Theorem 4. The mapping [grad + curloM], 

[grad + curlo M] : @ ~ ( 6 , ,  n( . )) + ve(Vt ,  I . I 
such that v = grad cp + curl $; V c p ~ @ ,  $ E M ( @ ) ,  is an isomorphism. 

Proof: Let F denote this correspondence @ + v .  This mapping is a linear bijection by virtue 
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of theorem 3. Now, taking into account that the operator div is an isomorphism, we obtain that 
F- '  is a continuous mapping from (Vt,l.Il,J onto ( G , , n ( . ) ) .  Conversely, since div-' is 
also an isomorphism, we have that 

Ivl1,n < ll dill-' II * II (lo,* = Ildiu-' II *n(($), 
and thus F is also continuous from (GI, n( .  )) onto (I/+, 1 .  I rn 

From the preceding results we can conclude that Vt, 6 ,  and Li(R) are isomorphic spaces. 
Moreover (G1, n) is a Hilbert space. 

4. CHARACTERIZATION OF THE PRESSURE BY PRESSURE POTENTIALS 

We are now ready to establish our basic result, that consists of a new variational formulation 
characterizing the pressure via associated potentials called hereafter pressure potentials. We 
further interpret this problem and show that this pressure potential class is related to the pressure, 
solution of a Stokes problem. 

4.1.  The underlying Helmholtz decomposition 

The pressure P solution of a Stokes problem is contained in Li(R), and is characterized by 
theorem 1. In addition we have that there exists a uniquely defined vector field z in V such 
that P = divz.  This vector field z is characterized in theorem 2. Moreover, based on the 
representation theorems, developed in section 3, we can associate a class of pressure potentials 
+G1, such that 

P = divz,  z = [grad + curloM](72). (14) 
By (14) we mean that for any ~ € 7 2  and l ~ M ( 7 2 )  that: z=gradn+curl[, where the 
mapping M is defined in theorem 3.2. Obviously, we have that 

f = - q Au + grad div z, in [H-'(R)l2, 

or with u = grad cp + curl t,b (for a detailed construction, see Reference 6), we obtain 

f = curl( - q A$) + grad(An - q Ap) in [H- ' (R)I2 ,  

which is a Helmholtz decomposition of a weakly defined vector field f. 

4.2. Characterization for the pressure by a pressure potential 

We formulate now our main result: 

Theorem 5. The pressure P solution of a 2-D Stokes problem (1) is given as P = An, for ~ € 7 2 ,  
72 being the pressure potential class, which exists and is uniquely characterized by the variational 
problem: 

? id,, (An,AA)o,n= (L,[grad+curloM]X), VkG,,  (15) 

where L is defined by (9 0, by (10) and M by theorem 3.2. 

Proof: By virtue of the isomorphisms described in the preceding, we have that (A.,A.)o,n is a 
bilinear continuous form on ( G , , n ( . ) )  which is also elliptic on this space. Similarly the linear 
form ci, -, (L, [grad + curloM](@)) is continuous on (GI, n( .)). We can apply the 
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Lax-Milgram theorem which guarantees k, characterized by the variational problem (1 5), to 

It may further be interesting to state an equivalent expression for the right-hand member 
exist and to be uniquely defined. 

of (15). We have by (5) that for ,kG1: 

(L,[grad +curloM](i)) = - q ( c u r l ~ , A p ) ~ , ~ -  ( f,gradA+curlp))raAcn,12, 

where p ~ M ( j ) .  
In the particular case (of considerable practical importance) where the domain is simply 

connected and sufficiently regular, such that for smoother data as f&(curl; Q) and gE[H+3/2(r)]2 
we have that AuE[L~(Q)]~, then further simplifications can be obtained for the right-hand member 
of (1 5). Indeed it is readily verified that: 

(L, [grad + curlo M] (i) ) = - q curl u 13,n dy - ( f ,  grad A)o,n, V ~ E O  ,, 
.lr 

which offers the advantage of avoiding the complementary construction of f i  = M ( j )  for any 
1 in 6, as required by the preceding. In these cases the Stokes problem amounts to determining 
some stream function and some pressure potential from the respective equivalence classes. What 
is important to remark at this stage is that the determination of a pressure potential can be 
performed by the same procedure as those of the stream function without major modifications. 
Indeed 

? $ E H ~ ( Q ) : ~ ~ $  = - g.2 on r, $ = H on r, I) = 0 at X O d -  

where H E H + ~ ’ ~ ( ~ ) : D H  = g-v, on r 

? 7t~H~(R):I3,n = 0 on r, n = 0 at X O d -  

(An, A40,n = - ( f ,  grad 4 o . n  + vl A* &A dy, 

V A E H ~ ( Q ) : I ~ , A  = o on r, i = o at X O E r .  

I r  

The main questions to be answered now are as follows. Can the variational problem ( 1 5 )  be 
interpreted as a Stokes problem and are there some boundary conditions which are implicitly verified? 
Before proceeding further, we want to point out that for the pressure potential class k, to  be linked 
up with the pressure, we also have, by  virtue of (I),, that, AP = div f in R, and thus for every n ~ k ,  

A2rc = d i v f  in Q. (16) 
Consequently from the interpretation of the problem, solved by theorem 5,  we are expecting (15) 
to be equivalent with some biharmonic problem (16), possibly together with ‘appropriate 
boundary conditions’ to be detailed hereafter. 

4.3. Interpretation of the problem solved by  (15 )  

We first remark that the equivalence classes i, defined as 
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are elements of 6,, where D(0) represents the space of test functions. Let us consider the class 
.r1~6, solution of (15), which by virtue of theorem 5 exists and is uniquely characterized. 
Now [grad + curloM](4) = grad x for ~ € 4 ,  and is an immediate consequence from the 
definition of M .  Moreover grad ~ E [ H A ( Q ) ] ~  and thus 

( f, [grad + curlo MI (4)  ) [HA(R),2 = - ( diu f, x ) [H;(n)p. 

(A7b w o , n  = - (grad 71, grad x ) [ H ; ( * ) ] 2  = <A% x). 

(17) 

The second term of the right-hand member is easily verified to reduce to zero. Finally the left-hand 
member of (1 5) becomes 

Taking now into account (17) and the preceding, we deduce from (15) that 

(A2n-diof,x) =0, V ~ E D ( R ) .  

The latter equation proves that the distributions contained in 7t~6, satisfy (16) in D(R)*. 

4.4.  Interpretation of the boundary conditions realized by (1 5) 

A most interesting and intricate topic to be discussed now consists in discovering which 
boundary conditions are implicitly realized by solving the variational problem (1 5). Indeed, the 
natural boundary conditions which are realized, besides the essential boundary conditions 8°K = 0 on 
r (and resulting from the construction of 7t in 6,), are unknown up to now. To verify which natural 
boundary conditions are verified, we use the technique (Reference 8, p. 20,25), which mainly 
consists in assuming additional smoothness of the solution. 

Let 7i~6, satisfy fi c H4(Q). By repeated use of Green’s formula, we obtain for any J E ~ ,  
that for 7 c ~ k  we have 

r r 

where p ~ M ( 2 ) .  Similarly, under the present regularity, which amounts to requiring 
fEH(div; Q) n H(curl; R), the first term of the right-hand side of (1 5) can be stated as: 

( f, [grad + curloM](l$) = - (diu f, il)o,n + (curl f, p)o,n 
r r 

The second term of the right-hand member of (15) is easily verified to satisfy 

a(u, [grad + curloM](f)) = - q [(Au, grad 2.)o,n + (Au, curl p)o,n], (20) 

for any ueH2(Q), satisfying diuu = 0 and thus also for the velocity field solution of the Stokes 
problem. We note that (19) and (20) are not altered, by taking i + c  or p + d ,  for any c , d ~ R  
rather than some ( i l , p ) ~ A  x M(A). Otherwise stated, we have 

a(u, [grad + curloM](~)) = - v] (curl Au, + (Au)-v il dy - (Au)-t p dy . (21) 

In the light of (16) and taking into account (18), (19) and (21) we conclude that (15) reduces to 
[ Jr Jr 1 

Ir [ f - t  - 8,(An) + q(Au)~]pdy  - [ f -v  - d,(An) + v](Au).v]Ady = 0, 
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Let us denote for short, [F = f - grad An + q Au. We then note that we already have that: 

div IF = 0 in R, curl ff = 0 in R, 

by virtue of (16). From (23) we further deduce: 
(23) 

jr[F.vdy=O and lF.Tdy=O. 
I r  

Moreover, the resulting equation (22) can now be stated as: 

{r[[F.vL-ff-~p]dy=O, V k O , ,  ~ E M ~ ( X ) .  

Taking then into account that for any we have that i I {A* + c l c ~ R }  is 
contained in @,, we obtain thus that 

Consequently we have for FE[J!?(R)]~ that (23) and (26) are valid, and hence we conclude by 
virtue of Reference 9 that there exists a unique stream function class, which represents F, i.e. 
there exists a unique $EH’(R)/R such that ff = curl9 in [L2(R)]2. Since IFEH(div;R)nH(curl;R) 
(cfr. (23)), we have that the associated stream function class 9 is a solution of the following 
Neumann problem: 

(27) ~EH’(R) /R:  - A 9  = 0 in R, 8,s = - IF-2 on r, 
the compatibility condition being verified by virtue of (24). Consequently (25) now becomes 

We are now going to show that (28) implies 9 = 0 in R and thus that (25) implies IF to be a zero 
vector field in R, completing this way the proof that the determination of the pressure potential 
according to (15) solves the Stokes problem for P=Arc. For a simply connected domain the 
proof is surprisingly simple, and therefore we distinguish hereafter two cases. 

If the domain R is simply connected, then the relation (28) reduces to fr9 8,A dy = 0 for 
V k O , ,  by virtue of (24). Since now k@, implies that 8 ,A~[H-”~(r) l  (Reference l ,p.5) 
and by Reference 7, p. 165, we obtain that 9 = 0 on r in H+’”(T). Taking now into account that 
SEH’(R) satisfies A 9  = 0 in R and 9 = 0 on r, we conclude that 9 = 0 in and thus that IF = 0 
in IT. 

In cases where the domain R is multiply-connected we will interpret (28) further and 
explicitly state the functional relation between 2. and the trace of some associated p. With 
some class A&,, there is asiociated a class  LEO^ characterized as follows: /i = {p + C ~ C E R }  
where 

N 

each term being defined by the problems 
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(i) p * t ~ ~ ( R ) : p *  = 0 on r, avp* = a7A on r, 
(ii) P O E H m : ( b o ,  AX)o,n = - @P*, AX)on, ~ X E H ; ( R ) ,  

(iii) t+hi for i = 1,. . . , N defined by (8), 
(iv) ( ~ 1 ,  ..., c N ) E [ W ~  

N 

1 Ci(A$i, A$'j)o,n = - ( A P * ~ A $ j ) o , ~ ~  j = 1,. . . , N .  (29) 
i =  1 

It is important to stress that the linear system (29) characterizing (cl,. . . , c N )  possesses a unique 
solution. Indeed the associated linear operator is positive definite, since IIA.Ilo,n is a norm 
on Y .  We are particularly interested in the traces of p ~ M ( i ) ,  on To, ..., TN. Now by 
construction we have that: p = O  on To, p = c i  on T i ; i =  1 ,..., N ,  where c=(c l  ,..., cN)  is 
characterized by (29) or by the equivalent linear system 

N 

1 c ~ ( A $ ~ , A $ ' ~ ) ~ , ~  = - A$ja,Ady j = 1 , .  . ., N ,  
i =  1 

shortly noted: L(c) = Z(aJ), where we introduce the map 

I :  o t H f  '['(I-) + ( - IrA$j o d y / j = 1 , .  . . , N ) t  [WN. 

We can replace now (28) by 

from which we deduce that 9 =  dv9 L-IoZ on r, which can only be realized provided 9 = 0  
and 8 , s  = 0 on r. Consequently, by virtue of the characterization (27), we conclude that IF = 0 
in SZ. 
Finally, we summarize that by solving (15)  we are formally solving the problem: 

?n:A'n=divf in R, 

a v n = O  on r, 
g r a d A n = f + q A p ,  in a. 

We then conclude, by virtue of the preceding, that (15) determines the pressure potential class 
fi and that the function P, defined as P = A n ,  n t 5 ,  satisfies g r a d P = f + q A u ,  in 
n, which formally corresponds with the pressure, characterized by a 2-d Stokes problem. 
Indeed we have on the one hand: 

g r a d P = f + q A u ,  in R, 

and on the other hand, with o = curl u: 

a , P = f . t + q a v w ,  on r 
a , P = f . v - q a , w ,  on r 

Consequently, under the present assumptions of regularity on the data we have that the boundary 
conditions, implicitly realized by the variational characterization of the pressure potential, are 
both of a Dirichlet and Neumann type on the pressure. 
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5. FINITE ELEMENT APPROXIMATIONS 

A finite element approximation of the problem (15) will be obtained by considering a finite element 
subspace v h  c H' (R)/R, where every element in the equivalence class is composed of piecewise 
polynomials from C' (n). Consequently these functions are constructed by, for example, Argyris 
triangles. The problem becomes 

? l i h E  v h  n 61, (AX,,, AL)o,a = L h ( i ) ,  v i€  v h  n 6 1,  (30) 
where L h ( l j , )  = - q(cur1 uh, A P ) ~ , ~  - ( f, grad 2 + curl p)[Hh(n)ln, and PE vh n 6, corresponds 
with according to: 

d z p  = 0 on r, d v p  = d7A on r, ( A ~ , A x ) ~ , ~  = 0, VJxEVhnY.  

In the latter construction of P ,  it is essential t o  realize exactly the matching at  the boundary r, 
between A andp,  such that grad 1 + curl ~LE[HA(R)]~.  Indeed this is an essential boundary condition, 
which stems from the mixed variational principle, and is thus to be exactly realized on the whole of 
I-. It follows that the Bell triangle (even with Vh c C' (n)nH2(R)) is not suited for this purpose, since 
on r the tangential derivative is a polynomial of degree 4, whereas the normal derivative is by 
construction a polynomial of degree 3. That this problem (30) is well-posed and possesses a 
unique solution follows from the properties of the forms involved, as shown in the preceding. 

Regarding the convergence properties, we readily deduce from the first Strang lemma 
(Reference 8,  p. 186) that there exists a constant C > 0 independent of the subspace vh, such that 

11 AX - A X h  I I O , R  d c inf{  1 1  A X  - Alllo,nl i E  vh/,n6, } 

Consequently by introducing the interpolation operator nh, related to the finite dimensional 
space V,,, we have 

For every LEA, ~ E Q ] ,  we have 

llALIl0,RG I C g ~ a d + c u ~ ~ ~ ~ l ( ~ ) I ' , R d  I&,*+ IPlz,n, P E M ( A ) .  

We note now that the operators M and rIh commute (i.e. MorI,, = IIhoM),  since the matching at the 
boundary between 2. and p is supposed to be exactly realized over the whole of r. We have then: 

d(li, v h n @ l ) b  Cl[1X-nh(X)12,R+ ~ ~ - n h ( ~ ) ~ Z , R l ?  

On the other hand: 

1(A$ - A $ h , A p ) ~ , n l  d CZ 11 $ - $ h  112.R' 11 AL I I o , R ,  
by taking into account that: ( 1  A$ - 
I( A p  IIo,n 6 C ,  11 A2 

d C, 11) - $hlz ,n,  and by virtue of proposition 5, that: 
Consequently we end up with the following appraisal: 
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Finally, we deduce by using classical convergence results (Reference 8, p. 355) that 

In cases where both the stream function and the space V, are constructed by using Argyris triangles, 
and under the usual hypotheses that the data (and in particular the stream function) and the 
pressure are sufficiently regular. The preceding methods, by determining the pressure via the use of 
pressure potentials, lead to numerical methods that of course are more elaborate than the mixed 
variational method for the Stokes problem, but provide the advantage of offering faster convergent 
numerical algorithms. 

6 .  SOME NUMERICAL EXAMPLES 

In Figures 1 to 3, we consider some practical situations. In each case, we consider a Stokes problem 
in some cavity. The boundary conditions on the velocity are: a parabolic in- (and out-) flow profile, 
and no slip conditions on the upper and lower wall. If 2u, is the total flux of the fluid per unit depth, 
we represent 

* n  - _ _  
9 

urn ?Urn 

which are the corresponding unnormalized stream function (Figures l(a), 2(a), 3(a)) and 
unnormalized pressure potential (Figures l(b), 2(b), 3(b)). The latter pressure potential is an 
element of 7teQ1, and is represented by the drawing of equipotential lines. 

7. CONCLUSIONS 

We have presented a new theoretical approach to the pressure characterization in Stokes problems 
(R"). In particular, for the 2-dimensional problem, it is demonstrated that the Stokes problem can 
indeed be decoupled first, as is well known, into an independent problem for the velocity field by 
using a stream function, and secondly into a newly defined problem, characterizing the pressure via 
a potential (-class 7t), called here the pressure potential (-class), such that P = An. The latter problem 
requires a knowledge of the velocity field, as is intuitively expected. Such a velocity field can easily 
be obtained by using a stream function formulation. The main result consists in the variational 
formulation (15) which characterizes uniquely the pressure potential class 7t (in GI). The main 
interest of these results, remains in the well-posedness of the problem, which moreover uniquely 
characterizes this pressure potential class. The most intricate question about this pressure 
characterization is the interpretation of the variational problem. As is shown in the section 4.4, the 
problem solved by the variational equations can exactly be interpreted as the Stokes problem, 
which implicitly realizes the equation of motion without stating explicitly, any boundary condition 
on the pressure. These new variational equations can easily be realized by finite element 
approximations. As was pointed out in section 5, these problems are well posed. Moreover, 
pressure potentials realized by Argyris triangles offer the advantage of ensuring an O(h4) 
convergence for the ( 1 .  l l O , R  norm of the pressure. 

These results on the pressure determination, reported in section 4, rely on an interpretation of 
the operator formulation of the Stokes problem. From this analysis, we deduce two basic 
characterizations for the pressure described by a Stokes problem in R" (section 2). However these 
results are of less numerical interest, since the construction of finite element subspaces of I/+ is 
obviously very difficult to realize. That our results from section 2 could finally be transformed into 
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variational principles of practical value was made possible on the one hand by restriction on to the 
two-dimensional case, and on the other hand by the analysis and results of section 3 about the 
representation by potentials, of vector fields in Vt. 
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